Triple 2:1 300MHz Mux-Amp $A_{V}=2$

The EL4332 is a triple very high speed $2: 1$ MultiplexerAmplifier. It is intended primarily for component video multiplexing and is especially suited for pixel switching. The amplifiers have their gain set to 2 internally, which reduces the need for many external components. The gain-of-2 facilitates driving back terminated cables. All three amplifiers are switched simultaneously from their A to B inputs by the TTL/CMOS compatible, common A/B control pin.
A -3dB bandwidth of 300 MHz together with $3 n$ s multiplexing time enable the full performance of the fastest component video systems to be realized.

The EL4332 runs from standard $\pm 5 \mathrm{~V}$ supplies, and is available in the narrow 16-pin small outline package.

Pinout

Features

- 3ns A-B switching
- 300MHz bandwidth
- Fixed gain of 2 , for cable driving
- > 650V/ μ s slew rate
- TTL/CMOS compatible switch
- Pb-free available

Applications

- RGB multiplexing
- Picture-in-picture
- Cable driving
- HDTV processing
- Switched gain amplifiers
- ADC input multiplexer

Ordering Information

PART NUMBER	PACKAGE	 REEL	PKG. DWG. \#
EL4332CS	16-Pin SO (0.150")	-	MDP0027
EL4332CS-T7	16-Pin SO (0.150")	$7^{\prime \prime}$	MDP0027
EL4332CS-T13	16-Pin SO $(0.150 ")$	$13^{\prime \prime}$	MDP0027
EL4332CSZ (Note)	16-Pin SO (0.150") (Pb-Free)	-	MDP0027
EL4332CSZ-T7 (Note)	16-Pin SO (0.150") (Pb-Free)	$7 "$	MDP0027
EL4332CSZ-T13 (Note)	16-Pin SO (0.150") (Pb-Free)	$13^{\prime \prime}$	MDP0027

NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J Std-020B.

Demo Board

A demo PCB is available for this product.

```
Absolute Maximum Ratings \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\)
```

V_{CC} to V_{EE}. 14 V
$V_{C C}$ to any GND . 12 V
V $_{\text {EE }}$ to any GND . 12 V
Continuous Output Current . 45 mA
Any Input . $\mathrm{V}_{\mathrm{EE}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$

Input Current, Any Input. 5mA
Power Dissipation . See Curves
Ambient Operating Temperature $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Junction Temperature . $150^{\circ} \mathrm{C}$
Storage Temperature. $60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

DC Electrical Specifications $\quad V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}$, Temperature $=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=\infty$

PARAMETER	DESCRIPTION	MIN	TYP	MAX	UNITS
V OS	Input Referred Offset Voltage		8	20	mV
$\mathrm{dV}_{\text {OS }}$	Input Referred Offset Voltage Delta (Note 1)		2	8	mV
RIN	Input Resistance		30		$\mathrm{k} \Omega$
I_{B}	Input Bias Current		-7	-30	$\mu \mathrm{A}$
dl_{B}	Input Bias Current Delta (Note 1)		0.5	4.0	$\mu \mathrm{A}$
A_{V}	Gain	1.94	2.00	2.06	V/V
$d A_{V}$	Gain Delta (Note 1)		0.5	2.5	\%
$\mathrm{C}_{\text {IN }}$	Input Capacitance		3.3		pF
PSRR	Power Supply Rejection Ratio	50	70		dB
V_{O}	Output Voltage Swing into 500Ω load	± 2.7	± 3.6		V
	Output Voltage Swing into 150Ω load		+3/-2.7		V
Iout	Current Output, Measured with 75Ω Load (Note 2)	30	40		mA
Xtalk ${ }_{\text {AB }}$	Crosstalk from Non-selected Input (at DC)	-70	-100		dB
Xtalk ${ }_{\text {CH-CH }}$	Crosstalk from one Amplifier to another Amplifier	-70	-100		dB
V_{IH}	Input Logic High Level	2.0			V
$\mathrm{V}_{\text {IL }}$	Input Logic Low Level			0.8	V
IIL	Logic Low Input Current ($\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$)	-0.3	-40	-80	$\mu \mathrm{A}$
I_{H}	Logic High Input Current ($\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$)	-3	0	3	$\mu \mathrm{A}$
Is	Total Supply Current	38	48	60	mA

NOTES:

1. Each channel's A-input to its B-input.
2. There is no short circuit protection on any output.

AC Electrical Specifications $\quad V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}$, Temperature $=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}$.

PARAMETER	DESCRIPTION	MIN	TYP	MAX
BW	-3dB Bandwidth		300	
BW 0.1 dB	$\pm 0.1 \mathrm{~dB}$ Bandwidth		105	
DG	Differential Gain at 3.58 MHz		MHz	
DP	Differential Phase at 3.58 MHz		MHz	
Pkg	Peaking with Nominal Load		0.04	
SR	Slew Rate (4V Square Wave, Measured $25 \%-75 \%)$	0.08		

AC Electrical Specifications $V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}$, Temperature $=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}$. (Continued)

PARAMETER		DESCRIPTION	MIN	TYP	MAX	UNITS
ts		Settling Time to 0.1\% of Final Value		13		ns
Tsw		Time to Switch Inputs		3		ns
OS		Overshoot, $\mathrm{V}_{\text {OUT }}=4 \mathrm{~V}_{\text {P-P }}$		8		\%
Isoab	10M	Input to Input Isolation at 10 MHz		60		dB
	100M	Input to Input Isolation at 100 MHz		40		dB
Isoch-ch	10M	Channel to Channel Isolation at 10 MHz		61		dB
	100M	Channel to Channel Isolation at 100 MHz		50		dB

Pin Descriptions

PIN NAME	
A1, A2, A3	"A" inputs to amplifiers 1, 2 and 3 respectively.
B1, B2, B3	" B " inputs to amplifiers 1, 2 and 3 respectively.
GND1, GND2, GND3	These are the individual ground pins for each channel.
Out1, Out2, Out3	Amplifier outputs. Note: there is no short circuit protection on any output.
$V_{\text {CC }}$	Positive power supply. Typically +5 V.
$\mathrm{~V}_{\text {EE }}$	Negative power supply. Typically -5 V.
A/B	Common input select pin, a logic high selects the "A" inputs, logic low selects the "B" inputs. CMOS/TTL compatible.

Burn In Schematic

Typical Performance Curves

FIGURE 1. SMALL SIGNAL TRANSIENT RESPONSE

FIGURE 3. SWITCHING TO GROUND FROM A LARGE SIGNAL UNCORRELATED SINE WAVE

FIGURE 5. SWITCHING TO GROUND FROM A SMALL SIGNAL UNCORRELATED SINE WAVE

FIGURE 7. SWITCHING GLITCH (INPUTS AT GROUND)

FIGURE 2. LARGE SIGNAL TRANSIENT RESPONSE

FIGURE 4. SWITCHING FROM GROUND TO A LARGE SIGNAL UNCORRELATED SINE WAVE

FIGURE 6. SWITCHING FROM GROUND TO A SMALL SIGNAL UNCORRELATED SINE WAVE

FIGURE 8. SWITCHING FROM A FAMILY OF DC LEVELS TO GROUND

Typical Performance Curves (Continued)

FIGURE 9. SWITCHING FROM GROUND TO A FAMILY OF DC LEVELS

FIGURE 11. GAIN vs FREQUENCY

FIGURE 13. -3dB BW vs SUPPLY VOLTAGE

FIGURE 10. CHANNEL A/B SWITCHING DELAY

FIGURE 12. GAIN vs FREQUENCY

FIGURE 14. BANDWIDTH vs DIE TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 15. FREQUENCY RESPONSE WITH CAPACITIVE LOADS

FIGURE 17. A-INPUT TO B-INPUT ISOLATION

FIGURE 19. OUTPUT SWING vs SUPPLY VOLTAGE

FIGURE 16. INPUT VOLTAGE NOISE OVER FREQUENCY

FIGURE 18. CHANNEL-CHANNEL ISOLATION

FIGURE 20. OUTPUT SWING vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 21. SLEW RATE vs SUPPLY VOLTAGE

FIGURE 23. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 22. SLEW RATE vs DIE TEMPERATURE

FIGURE 24. POWER DISSIPATION vs AMBIENT TEMPERATURE

FIGURE 25. POWER DISSIPATION vs AMBIENT TEMPERATURE

FIGURE 26. TYPICAL CONNECTION FOR A 2:1 COMPONENT VIDEO MULTIPLEXER

Applications Information

Figure 26 shows a typical use for the EL4332. The circuit is a component video (R, G, B or Y, U, V) multiplexer. Since the gain of the internal amplifiers has been set to 2 , the only extra components needed are the supply decoupling capacitors and the back terminating resistors, if transmission lines are to be driven. The EL4332 can drive backmatched 50Ω or 75Ω loads.

Grounds

It will be noticed that each mux-amp channel has its own separate ground pin. These ground pins have been kept separate to keep the channel separation inside the chip as large as possible. The feedback resistors use these ground pins as their reference. The resistors total 400Ω, so there is a significant signal current flowing from these pins to ground.

The ground pins should all be connected together, to a ground plane underneath the chip. 1 oz . copper for the ground plane is highly recommended.

Further notes and recommended practices for high speed printed circuit board layout can be found in the tutorials in the Elantec databooks.

Supplies

Supply bypassing should be as physically near the power pins as possible. Chip capacitors should be used to minimize lead inductance. Note that larger values of capacitor tend to have larger internal inductances. So when designing for 3 transmission lines or similar moderate loads, a $0.1 \mu \mathrm{~F}$ ceramic capacitor right next to the power pin in parallel with a $22 \mu \mathrm{~F}$ tantalum capacitor placed as close to the $0.1 \mu \mathrm{~F}$ is recommended. For lighter loadings, or if not all the channels are being used, a single $4.7 \mu \mathrm{~F}$ capacitor has been found quite adequate.

Note that component video signals do tend to have a high level of signal correlation. This is especially true if the video signal has been derived from 3 synchronously clocked DACs. This corresponds to all three channels drawing large slew currents simultaneously from the supplies. Thus, proper bypassing is critical.

Logic Inputs

The A/B select, logic input, is internally referenced to ground. It is set at 2 diode drops above ground, to give a threshold of about 1.4V (see Figure 27). The PNP input transistor requires that the driving gate be able to sink current, typically $<30 \mu \mathrm{~A}$, for a logic "low". If left to float, it will be a logic "high".

FIGURE 27. SIMPLIFIED LOGIC INPUT STAGE

The input PNP transistors have sufficient gain that a simple level shift circuit (see Figure 28) can be used to provide a simple interface with Emitter Coupled Logic. Typically, 200 mV is enough to switch from a solid logic "low" to a "high."

FIGURE 28. ADAPTING THE SELECT PIN FOR ECL LOGIC LEVELS

The capacitor $C_{F F}$ is only in the network to prevent the A / B pin's capacitance from slowing the control signal. The network shown level shifts the ECL levels, -0.7 V to -1.5 V to +1.6 V and +1.1 V respectively. The terminating resistor, R_{TT}, is required since the open emitter of the ECL gate can not sink current. If a -2 V rail is not being used, a 220Ω to 330Ω resistor to the -5.2 V rail would have the same effect.

Expanding the Multiplexer

In Figure 29, a 3:1 multiplexer circuit is shown. The expansion to more inputs is very straight forward. Since the EL4332 has a fixed gain of 2, interstage attenuators may be required as shown in Figure 28. The truth table for the 3:1 multiplexer select lines is:

TABLE 1.

\mathbf{X}	\mathbf{Y}	MUX OUTPUT
0	0	R3, G3, B3
0	1	R2, G2, B2
1	X	R1, G1, B1

When interstage attenuators are used, the values should be kept down in the region of $50 \Omega-300 \Omega$. This is to prevent a combination of circuit board stray capacitance and the EL4332's input capacitance forming a significant pole. For example, if instead of 100Ω as shown, resistors of $1 \mathrm{k} \Omega$ had been used, and assuming 3pF of stray and 3pF of input capacitance, a pole would be formed at about 53 MHz .

FIGURE 29. TYPICAL CONNECTION FOR A 3:1 COMPONENT VIDEO MULTIPLEXER

A Bandwidth Selectable Circuit

In Figure 30, a circuit is shown that allows three signals to be either low pass filtered or full bandwidth.

This could be useful where an input signal is frequently noisy. The component values shown give a Butterworth LPF response, with a -3 dB frequency of 50 MHz . Note again, the resistor values are low, so that stray capacitance does not affect the desired cut-off frequency.

FIGURE 30. SWITCHED 50MHz LOW PASS FILTER FOR HIGH/LOW RESOLUTION MONITORS

EL4332 Macromodel

* EL4332 Macromodel
* Revision A, April 1996
*Applications Hints. The EL4332 has two V_{CC} pins, one V_{EE} pin, and three ground *pins. The V_{CC} pins (pins 14 and 15 are internally shorted together in the model, *but the ground pins (GND1, GND2, and GND3 (nodes 2, 7, and 10, respectively) *must be connected to ground (node 0) using a le-6W resistor. Alternatively,
* nodes 2,7 , and 10 may be connected to ground through a 25Ω resistor in parallel * with a 4 nH inductor to simulate package and PCB parasitics.
* Connections:
* OUT1
* | GND1
* | | A1
* | | B1
* | | | | B2
* | | | | | A2
* | | | | | | GND2
* | | | | | | | OUT2
* | | | | | | |
$\begin{array}{lllllllll}* & \mid & \mid\end{array}$
$\begin{array}{lllllllll}* & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
*
* OUT3
* | GND3
* | | B3
* | | A3
* $|\quad| \quad|\quad| \quad V_{E}$
* 1
* |
* |
* $9 \quad 10 \quad 11 \quad 12$

Rshort 1415 le-12
rshort1 150100 Meg
Isw 141101.5 mA
vref 11101.6 V
q1 10116110 qp
q2 102111110 qp
R1 10113500
R2 10213500
Rd1 1070100
Esw 1070 table $\left\{v(102,101)^{*} 100\right\}(0,0)(1,1)$
*
************Amplifier \#1 *************
q131 1033112 qp
q141 104114113 qp
q151 1054115 qp
q161 106117116 qp
la11 141121 mA
la21 141131 mA
lb11 141151 mA
lb21 141161 mA
Rga1 112113275
Rgb1 115116275
R31 10313275
R41 10413275

```
R51 105 13275
R61 106 13275
R711114400
R81114 2400
R9111174400
R1101172400
Ediff1 108 0 value {(v(104,103)*v(107))+(v(106,105)*(1-v(107)))}
rdiff1 108 0 1K
*
*Compensation Section
*
ga1 0 134 108 0 1m
rh1 13405 Meg
cc1 13400.6 pF
*
*Poles
*
ep1141013401.0
rpa1141142 200
cpa1 1420 0.75 pF
rpb1 142 143200
cpb1 14300.75 pF
*Output Stage
*
i011 15 150 1.0 mA
i021 151 13 1.0 mA
q7113143150 qp
q81 15143 151 qn
q9115150152 qn
q10113151 153 qp
ros1115212
ros2115312
*
************Amplifier #2***********
q231 2036 212 qp
q241 204 214 213 qp
q2512055 215 qp
q261206217216 qp
la12 142121 mA
la22 14213 1 mA
lb12 14215 1 mA
lb22 14 216 1 mA
Rga2 212 213275
Rgb2 215 216 275
R23120313275
R241 20413275
R251 205 13275
R261 206 13275
R271 }221440
R2812147400
R291 }821740
R210 2177400
Ediff2 208 0 value {(v(204,203)*v(107))+(v(206,205)*(1-v(107)))}
rdiff2 208 0 1K
*
* Compensation Section
*
ga2 0 234 208 0 1m
rh2 23405 Meg
cc2 234 0 0.6 pF
```

```
*
* Poles
*
ep2 241023401.0
rpa2 241242200
cpa2 2420 0.75 pF
rpb2 242 243 200
cpb2 24300.75 pF
*
*Output Stage
*
i0 12 15 250 1.0 mA
i022 251 131.0 mA
q271 13 243 250 qp
q28115 243 251 qn
q291 15 250 252 qn
q201 13251253 qp
ros12252 }
ros22 253 82
*
************Amplifier #3 ************
q331303 12 312 qp
q341304314313 qp
q351 305 11 315 qp
q361 306 317316 qp
la13 143121 mA
la23 14 3131 mA
lb13 14 315 1 mA
lb23 14 316 1 mA
Rga3 312313275
Rgb3 315 316 275
R33130313275
R34130413275
R35130513275
R36130613275
R3719314400
R381 31410400
R3919317400
R310 31710400
Ediff3 308 0 value {(v(304,303)* (v(107))+(v(306,305)*(1-v(107)))}
rdiff3 3080 1K
*
* Compensation
*
ga3 0 334 308 01m
rh3 33405 Meg
cc3 33400.6 pF
*
* Poles
*
ep3 34103340 1.0
rpa3 341 342 200
cpa3 34200.75 pF
rpb3 342 343 200
cpb3 3430 0.75 pF
*
* Output Stage
*
i013 15 350 1.0 mA
i023 351 131.0 mA
q371 13343 350 qp
```

q381 15343351 qn
q391 15350352 qn
q301 13351353 qp
ros13 35292
ros23 35392
*

* Power Supply Current
*

ips 151322 mA
*Models
*
.model qp pnp(is $=1.5 \mathrm{e}-16 \mathrm{bf}=300 \mathrm{tf}=0.01 \mathrm{~ns}$) .model qn npn(is=0.8e-18 bf=300 tf=0.01 ns) .ends

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

